

MV6601C Datasheet

MVD-6601-04-DS-EN Version: 0.7 May 2008

Declarations

Circuit diagrams and other information relating to products of Mavrix Technology, Inc. ("Mavrix") are included as a means of illustrating typical applications. Consequently, complete information sufficient for construction is not necessarily given. Although the information has been examined and is believed to be accurate, Mavrix makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and disclaims any responsibility for inaccuracies. Information in this document is provided solely to enable use of Mavrix' products. The information presented in this document does not form part of any quotation or contract of sale. Mavrix assumes no liability whatsoever, including infringement of any patent or copyright, for sale and use of Mavrix's products, except as expressed in Mavrix's Terms and Conditions of Sale for. All sales of any Mavrix products are conditional on your agreement of the terms and conditions of recently dated version of Mavrix's Terms and Conditions of Sale agreement Dated before the date of your order.

This information does not convey to the purchaser of the described semiconductor devices any licenses under any patent rights, copyright, trademark rights, rights in trade secrets and/or know how, or any other intellectual property rights of Mavrix or others, however denominated, whether by express or implied representation, by estoppels, or otherwise.

Information Documented here relates solely to Mavrix products described herein supersedes, as of the release date of this publication, all previously published data and specifications relating to such products provided by Mavrix or by any other person purporting to distribute such information. Mavrix reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your Mavrix sales representative to obtain the latest specifications before placing your product order. Mavrix product may contain design defects or errors known as anomalies or errata which may cause the products functions to deviate from published specifications. Anomaly or "errata" sheets relating to currently characterized anomalies or errata are available upon request. Designers must not rely on the absence or characteristics of any features or instructions of Mavrix's products marked "reserved" or "undefined." Mavrix reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Mavrix's products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of Mavrix and further testing and/or modification will be fully at the risk of the customer.

Copies of this document and/or other Mavrix product literature, as well as the Terms and Conditions of Sale Agreement, may be obtained by visiting Mavrix's website at http://www.mavrixtech.com/ or from an authorized Mavrix representative. The word "MAVRIX", the Mavrix's LOGO, whether used separately and/or in combination, and the phrase "M", are trademarks of Mavrix Technology, Inc.. Names and brands of other companies and their products that may from time to time descriptively appear in this product data sheet are the trademarks of their respective holders; no affiliation, authorization, or endorsement by such persons is claimed or implied except as may be expressly stated therein.

MAVRIX DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING OR USAGE OF TRADE.

IN NO EVENT SHALL MAVRIX BE RELIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT; NEGLIGENCE OF MAVRIX OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER MAVRIX HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR NOT.

Additional Support:

Additional product and company information can be obtained by visiting the Mavrix website at: <u>http://www.mavrixtech.com/</u>.

Contents

Re	vision H	listory	5
1.	Gener	ral Description	6
2.	Featu	re	7
	2.1	Processor	7
	2.3	Multimedia Decoder	7
	2.4	Video Interface	7
	2.5	Audio Interface	
	2.6	Host Interface	
	2.8	Peripheral Interface	
	2.9	Memory Controller	
	2.10	Stack SDRAM	
	2.11	Power and Package	8
3.	Block	Diagram	9
4.	Funct	ional Description1	0
Z	.1	32-bit RISC Core1	0
Z	.2	Multi-core "Class-DSP"1	0
Z	.3	DMA Controller	0
Z	.4	Host Interface	1
	4.4.1.	I2C Interface1	2
	4.4.2.	SPI Interface1	3
	4.4.3.	UART Interface1	5
	4.4.4.	LCM-Like 8-bit I80 Interface1	6
2	.5.	Peripheral Interface	7
	4.5.1	I²C1	8
	4.5.2	SPI1	8
	4.5.3	PWM1	8
4	.6.	Display Interface1	8
	4.7.1	Display Scalar1	8
	4.7.2	Image Control1	9
	4.7.3	Display Overlay1	9
	4.7.4	Camera Emulation Output1	9
	4.7.5	LCD Display Controller2	!1
4	.7.	Audio Interface	24
	4.8.1	I ² S Audio Interface2	
	4.8.2	Internal Audio DAC2	24

4.8. 4.9.1	Memory Interface NOR Flash Controller	
4.9. 4.10.1	GPIO General Purpose Input/Output Interface	
5	I Description	
5.1	Pins Description	
5.2	IO-Trap Setting	35
5.3 5.3.1 5.3.2	Boot-up Sequence Host-Boot Sequence Flash-Boot Sequence	.36
6. Electr	ical Characteristic	38
6.1	Absolute Maximum Rating	38
6.2	Operating Condition	38
6.3	DC Characteristic	39
6.4 6.4.1 6.4.2	Crystal Input Timing Crystal Oscillation External Clock	.40
6.5 6.5.1 6.5.2 6.5.3 6.5.4 6.5.5	AC Characteristic HIF Timing LCD Controller Timing Camera Emulation Timing I2S Interface Timing NOR Flash Controller Timing	.41 .41 .41 .41
6.6	I/O Pad Characteristic	42
7. Physic	cal Information	43
7.1	Package Dimension	43
7.2	Pin Map	44
7.3	Ordering Information	44
7.4	Storage Condition and Period for Package	44
7.5	Recommended SMT Temperature Profile	44
Appendix.		46
Acronym a	and Abbreviation	47
-	nformation	

Revision History

Date	Version	Description
2007/07/05	0.1	Initial Draft
		Added Boot Up Sequence, Overview, Group Connection
2007/07/06	0.2	Diagram.
		Modified Tables, Pin assignment, Pin Description
2007/07/00	07/09 0.3	Remove Section 1.3 Advance Feature List,
2007/07/09		Modify Pin Description, Makes viewable graphics
2007/07/11	0.4	Edit Acronym and Abbreviations
2008/05/10	0.6	Update
2008/05/12	0.7	Update

1. General Description

The MV6601C[™] multi-core processor is a versatile high-performance, low-power, high integration system-on-chip (SoC) targeted at multimedia enabled cell phones, personal media players (PMP), multimedia clients, and devices where low power multimedia features are valued.

The MV6601C SoC features a multimedia processing engine that removes the need for additional external DSP chip. With built-in TFT LCD controller, MV6601C is designed to support directly driver LCD module with a 18bit RGB666 LCD controller and diver, and support both 8bit parallel camera input and output interface conforming to YCbCr 4:2:2 format. With built-in Audio DAC & Amplifier, MV6601C is designed to support both digital and analog audio output, support digital audio protocol - I2S, and can output analog audio directly or with headphone amplifier.

The MV6601C also including various host processor interface (I2C/SPI/UART/LCM-Like), NOR Flash interface, I²C & SPI serial interfaces, PWM output port, the MV6601C is an ideal choice for system integrators seeking to maximize performance and minimize system cost.

The MV6601C stacked with 8M bytes SDRAM in single package.

The MV6601C chip also supports RISC instruction set which enables user customization. Designed for minimal integration effort for multimedia resolutions, maximum performance at low power, the device only needs to run at speed no more than 150 MHz so the overall power dissipation is less than 250mW. In addition, MV6601C is integrated with on-chip memory controllers and flexible input/output options and can run a variety of operating systems.

2. Feature

2.1 Processor

- Integrated RISC core supports 32-bit architecture and instruction set
- Multi-core "Class-DSP" for multimedia processors

2.3 Multimedia Decoder

- ² Support various video format: MPEG1/2/4, H.264, AVS, RM/RMVB, AVI
- ² Support various video solution QVGA/CIF/QQVGA/QCIF @ 30fps
- Support various audio format: MP3/AAC/AAC+

2.4 Video Interface

- Support LCD display base on RGB565 /RGB666 format
- Support directly driver the TFT color LCD module
- 2 YUV 4:2:2 outputs for emulate as camera sensor connect to host
- 2 YUV 4:2:2 input for connect to camera sensor module
- Support multi-resolution with video scalar
- Support overlay and OSD with alpha blending
- ² Support hue and gamma correct

2.5 Audio Interface

- Support digital audio interface I2S input & output for external audio codec.
- Support stereo analog audio output with built-in audio DAC
- ² Support directly stereo headphone output with built-in 24mW amplifier

2.6 Host Interface

- ² Support various serial interfaces (slave to host) I2C, SPI, UART
- ² Support various parallel interface (slave to host) LCM-like 8-bit memory bus interface

2.8 Peripheral Interface

- Most of pins in MV6601C can act as GPIO
- ² Serial peripheral (master) interface: I2C, SPI
- 2 4 channel PWM outputs

2.9 Memory Controller

- ² 4 channel independent Multi-priority based DMA
- ² Support Self-boot NOR Flash size up to 8M bytes

2.10Stack SDRAM

- Stack with 8M bytes SDRAM in single package
- ² Stack SDRAM speed up to PC133

2.11 Power and Package

- ² Operating voltages
 - ° Core: 1.2V
 - ° PLL: 1.2V (Sensitive)
 - ° Host interface: 1.8V ~ 3.3V
 - ° General I/O: 1.8V ~ 3.3V
 - ° SDRAM: 2.3V ~ 2.7V
 - ° Analog: 2.7V ~ 3.6V
- Multiple power domains and gated clocks
- ² Power modes: Active and Shutdown
- 2 0.13 µm CMOS
- Package: 0.5mm pitch, 10mmX10mmX1.2mm, 208 ball TFBGA

3. Block Diagram

The following figure shows the functional block diagram.

	8bit LCM Inter	face I ² C/SP	I/UART	
		HIF)	
GPIO	Video Codec AVSIVIA /H.264 MPEG2 MPEG4 Real Video Audio Codec AAC WMA MP3 APE FLAC AC3	SoC BUS	Media Processor	YCbCr 4:2:2 RGB 18bit Video Output 1 ² S Audio Codec DAC Head Phone
		RISC32 Process	sor	
		MV6601C		RAM

Figure 1 Functional block diagram

4. Functional Description

4.1 32-bit RISC Core

MV6601C integrated a general purpose RISC processor, which provides a versatile high integrate, high-performance, low-power SoC. It also supports 32-bit architecture and instruction set. The cache is a four ways associative type with separate 16K bytes instruction and 16K bytes data. Our general purpose RISC processor supports essential instructions and features which are found in industry-standard RISC processors such as ARM and PPC.

4.2 Multi-core "Class-DSP"

4.2.1 RICE Processor Description

The Mavrix's 32-bit RISC Processor named <u>RICE (RISC Instruction Core Engine)</u> is designed to be used as the backbone for all Mavrix's Class Oriented Pipeline Processors. Therefore, the RICE was architected from inception with power, area, and performance in mind. The focus is to make the RICE nimble but complete. Architectural simplicity not only leads to small area and low power, it also facilitates firmware coding and future enhancements. The RICE has the essential instructions and features that are found in industry-standard RISC processors such as ARM and MIPS, with the coprocessor support needed for the Mavrix's class specific instructions.

4.2.2 Matrix Processor Description

The Mavrix M2 Matrix Processor is an innovative Multimedia Processing core designed to accelerate the processing of popular media compression/decompression schemes. The M2's unique Matrix data path and instruction set allows for efficient processing of H.264/AVC, JPEG/MPEG, RM/RMVB in a fully programmable core.

4.3 DMA Controller

The Global DMA is a general purpose direct memory access controller. It is in charge of moving data between different internal modules and external devices. The global DMA servers the following DMA clients: peripheral devices, DRAM, Video processor. There are 4 independent channels, one per source and destination pair. Each source and destination address is programmable, and data endian is programmable conversion during transfer. Interrupt generation on transfer complete.

4.4 Host Interface

The MV6601C provides various host interfaces which allows an external master to connect to MV6601C. By the software level, a pair of software API will be implemented inside the MV6601C SoC and the host processor (We call the software run at the host processor as "HIF" supplied by Mavrix). Commands from host will be sent to MV6601C, explained and executed by MV6601C, and also information inside MV6601C will be obtained by the host.

Briefly, it is the main interface which exchanges data by MV6601C to help our customer to integrate whole MV6601C function. Media streaming is also send to MV6601C for viewing by the host interface.

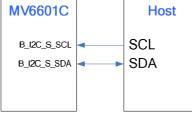
The MV6601C supports multiple types of serial host interface and one parallel interface. The CPU interprets the host commands, performs corresponding operations and then sends the status back to the host processor.

Optionally, MV6601C also output one level-trigger signal to interrupt the host. (INTR) The MV6601C supports the following types of host interfaces:

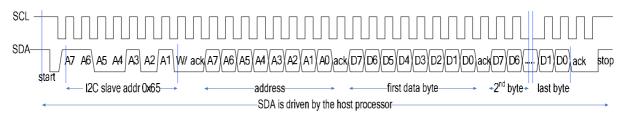
- I I2C (slave)
- I S<u>PI (slav</u>e, mode 0/1/2/3)
- I UART
- LCM-like 8-bit 180 interface

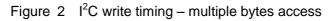
Note: The data field may contain multiple bytes when necessary.

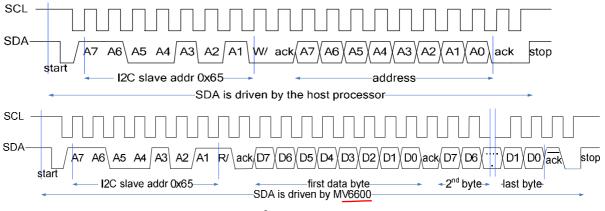
Note: Multiple bytes data is transfer by Little-Endian that is low byte transferred first.


Note: Since MV6601C RISC is based on <u>32bit access</u>, all data bytes after the addresses are treated as <u>4-chained bytes</u>. That is, the API in the host processor will group 4 consecutive bytes access together as a single 32bit access.

4.4.1. I2C Interface

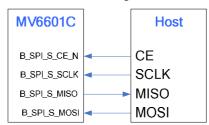

The MV6601C acted as an I²C slave. Through the IO-Trap configuration, alternative I²C slave addresses can be selected (Default address is 0x65).


The speed of I²C interface in MV6601C is up to 1.5Mbps.


The following diagram shows the access timing:

Write Timing: To write data to MV6601C, only one I^2C cycle is needed, both the command and the contents are send to the bus.

Read Timing: To read from MV6601C, two I^2C cycles are needed. First cycle writes the register address to be accessed from, and second cycle read the contents.


Note: When write data to slave, the ACK handshake is always needed and driven by the I^2C slave device - MV6601C. When read data from MV6601C, the ACK handshake should be driven by the host.

4.4.2. SPI Interface

The "Serial Peripheral Interface" (SPI) is a synchronous four wires serial link used to connect to MV6601C. The two serial data lines with "Master out, Slave in" (MOSI) or "Master In, Slave out" (MISO) signals. MV6601C supports all four clocking modes for data exchange, and the serial clock frequency is up to 24MHz. Each clock cycle shifts data out and data in; the clock doesn't cycle except when there is data to shift. An IO-Trap option defines the access clocking mode.

The access mode can be read or write, depending on the bit-7 of address transfer. Multiple data bytes can be transferred, following the address.

The following diagrams illustrate the timing of MV6601C access via the SPI serial interface.

SPI mode-0 (clock stops at logic 0 when idle, rising edge latch data) Write Cycle Timing

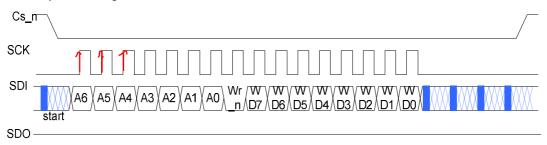


Figure 4 SPI mode-0 write timing

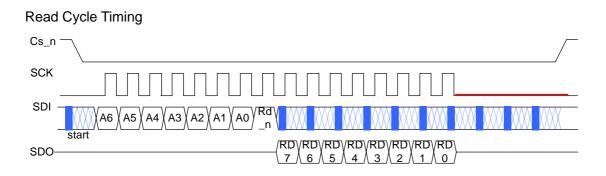
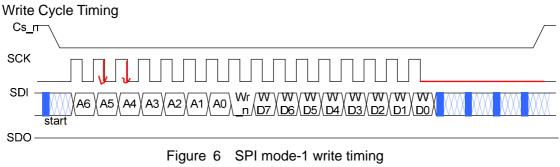



Figure 5 SPI mode-0 read timing

SPI mode-1 (clock stops at logic 0 when idle, falling edge latch data)

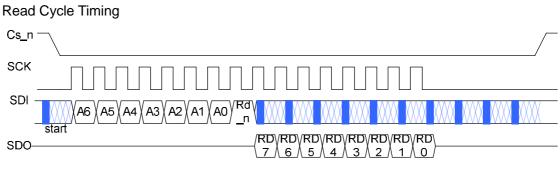
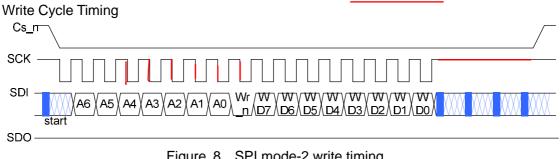
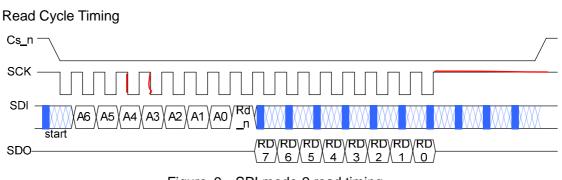
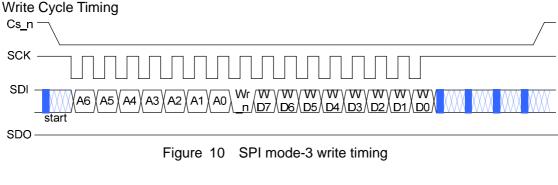
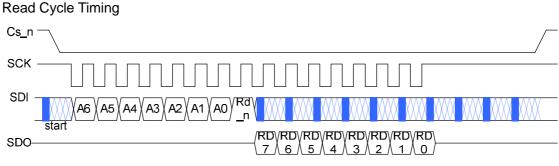




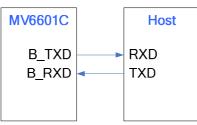
Figure 7 SPI mode-1 read timing

SPI mode-2 (clock stops at logic 1 when idle, falling edge latch data)



SPI mode-3 (clock stops at logic 1 when idle, rising edge latch data)




Figure 11 SPI mode-3 write timing

4.4.3. UART Interface

MV6601C provide an UART serial interface connect to host. MV6601C need 9-bit data transfer protocol. The last bit "bit-8" defines whether the transfer is a command or a data. All data transfer must be followed by one command transfer.

The command transfer defines the access address and mode. The access mode can be read or write, depending on eighth bit "bit-7" of the command. The write transfer can send multiple data followed by one command. The read transfer send the read command at first, after MV6601C received the read command, it would transfer following data back to host.

The default baud rate is 9600bps after hardware reset, and The baud rates can be programmed from 1200bps to 1.5Mbps. The time interval between each read byte is also programmable from 0 to 255 bits.

The following diagrams show the timing. Write Cycle Timing

MV6601C Data Sheet(V0.7)

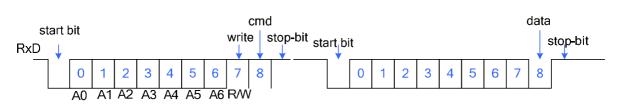
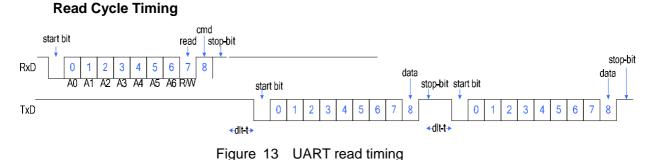
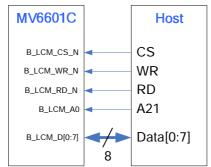



Figure 12 UART write timing


Note: The (dlt-t) represents the internal time between each read data transfer.

4.4.4. LCM-Like 8-bit I80 Interface

The MV6601C also provides an 8bit width parallel interface, which is a memory bus and standard RAM interface, and which could significantly improve the data throughput. The interface is compatible to the LCD Module (LCM) interface meeting the I80 interface protocol, so we call it LCM-Like.

The command is send when A0 is low, and the data is send/receive when A0 is high. Due to MV6601C access in 32bit width, so four clock cycles complete one transfer, and it uses LSB data format transfer.

The CS desert indicates one transfer beginning, so must always keep CS low in one transfer duration time.

CAUTION: The MV6601C LCM-Like interface is 8bit width, but the host may be 16bit or 32 bit width system. In both case, it should put the address at the MSB of command, may fill zero at begin bytes.

Write Cycle Timing

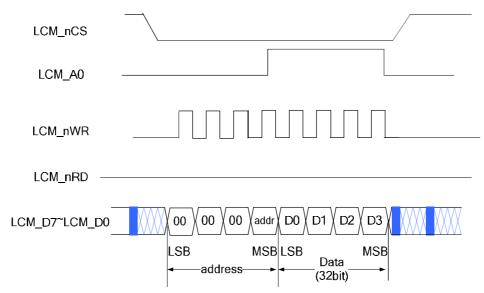


Figure 14 LCM I80 interface write timing

Read Cycle Timing

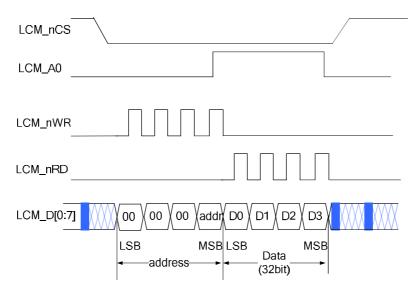


Figure 15 LCM I80-series interface read timing

4.5. Peripheral Interface

In addition, MV6601C also supports multiple types of peripheral interfaces to control and communication to other peripheral devices.

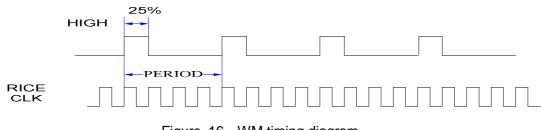
MV6601C supports the following types of peripheral interfaces:

I 1 I2C master interface

- I 1 SPI master interface
- I 4 PWM output
- I GPIO

4.5.1 I²C

To communicate with peripheral devices, MV6601C will act as an I2C master. The interface timing and read/write protocol are the same as the interface used by the host interface. Please refer to the host interface section for detail.


4.5.2 SPI

Similar to the I2C master interface, MV6601C also supports a SPI serial interface in master mode. The MV6601C supports all four SPI clocking modes. Please refer to the host interface section for detail.

4.5.3 PWM

PWM (Pulse Width Modulation) block is a powerful interface for controlling analogy circuits with a processor's digital outputs. PWM is a way of digitally encoding analogy signal levels. There are four PWM output pins in the MV6601C.

PWM Timing Diagram

Figure 16 WM timing diagram

4.6. Display Interface

The Display Interface controller block is designed to output images to an LCD panel display or to the Camera sensor input of Host processor. And it also has a camera sensor input port that can receive image data from the sensor and put into memory via DMA, or directly bypass all sensor signals to output port.

This interface have rich feature which including Video scalar, Display Overlay, 16/18bit RGB output, 8bit YUV output, GAMMA control, Alpha blending.

4.7.1 Display Scalar

MV6601C implements a video scalar in its display path, Depending on the register setting, the scalar can handle quarter Macro Block (SMB) inputs (Media streaming

playback). The input to the display and scaling block is assumed to be DRAM. In the LCD parallel display modes, the pixel format is selectable as YCbCr 4:2:2 or YCbCr 4:2:0, and the pixel placement within DRAM is assumed to be planar. That is, Y, Cb, and Cr are all separately placed in the source memory instead of interleaved together. The scalar allows for integer decimation by 2. In both horizontal or vertical direction and an independently controlled fractional horizontal and vertical scale down to 2X. Both the Camera Emulation output and the LCD parallel output can be scaled.

Please note that since the scalar hardware sometimes needs to handle SMB inputs, a built-in buffer is required. To reduce the overall buffer size, the width of input frame to Scalar block should be restricted to be no larger than 800 pixels (Y being the worst case).

4.7.2 Image Control

The MV6601C can easily adjust image parameters, including Hue saturation and Gamma. The Gamma adjustment uses the 16-element color palette.

The overlay images can be mixed with graphic image through Alpha Blending mode, thus to form applications such as transparent menu.

4.7.3 Display Overlay

To allow for users to draw menus icons over the video in the display output, MV6601C implements a graphics overlay sub-block. The display overlay merges inputs from a separate DRAM location (a graphics buffer) to the output of the Color-Space-Conversion sub block. It is up to the firmware to define the size of the graphic buffer as well as the "overlay area". The overlay region is defined as a single region with starting line number as well as ending line number. (Only the y-direction can be specified, the x-direction is assumed to be entire row)

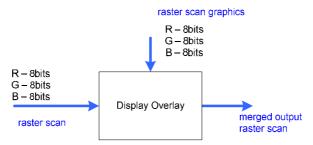


Figure 17 Display overlay block diagram

4.7.4 Camera Emulation Output

The MV6601C supports a camera emulation output interface. This interface can be used by the host processor to obtain media graphic data from MV6601C for display by the host processor. The camera emulation output port supports the Camera YUV 4:2:2 display data outputs, QVGA 320x240 at 30fps.

The LCM_MCLK is used as master clock supplied by the host (or outside oscillator) to

MV6601C. The MV6601C will generate an internal pixel clock (LCD_PCLK) based on the MCLK. Since the frequency of the master clock is normally multiples of the pixel-clock, the MV6601C utilizes an internal divider for the internal pixel clock generation and synchronization to the input clock. In addition, LCD_VS and LCD_HS provide the necessary vertical sync (frame valid) and horizontal sync (line valid) signals to the host. Display data is streamed to the host via the 8bit YUV bus which supports YCbCr 4:2:2 formats. The data output can either be in the sequence of Y0-Cb-Y1-Cr or Cb-Y0-Cr-Y1 format. The following figures illustrate the interconnection examples between the MV6601C and a host processor supporting camera-interfaces.

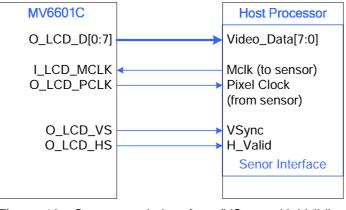


Figure 18 Sensor mode interface (VSync + H_Valid)

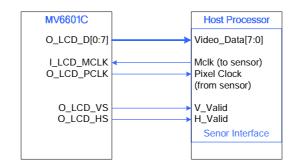


Figure 19 Sensor mode interface (V_Valid + H_Valid)

Data Transfer Timing

This sub-section describes the timings in Sensor Mode: (VSync + H_Valid) & (V_Valid + H_Valid) for the video data transfer between MV6600 and the host processor.

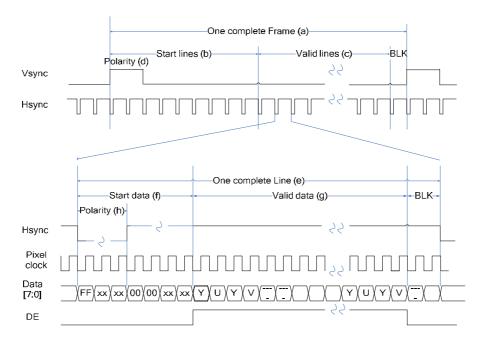
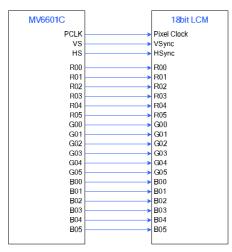


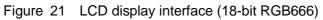
Figure 20 Sensor mode interface YUV data transfer timing (VSync + H_Valid)

Symbol	Name	Unit	Value	Range
а	VS Period	Line	250	0~4096
b	Start blank lines	Line	10	0~1024
С	Valid lines	Line	240	0~1024
d	Active phase	Line	2	0~4096
е	HS Period	Dot	800	0~4096
f	f Start blank dots		140	0~1024
g	g Valid dots		640	0~1024
h	Active phase	Dot	40	0~4096

Note: During this particular sensor mode, polarity for VSync and H_Valid, are programmable as either active high or active low. Pulse width for the vertical synchronization is programmable, and both horizontal blanking and vertical blanking are programmable. In addition, the number of dummy pixels at the beginning of each line and the number of dummy lines (will show up as a delay before H_Valid goes active after VSync) at the beginning of each frame are programmable as well.

4.7.5 LCD Display Controller


The MV6601C provides a parallel interface to driver the LCD panels. The LCD display interface is based on 18/16 bit RGB format. The RGB protocol uses vertical and horizontal synchronization signals (VS and HS) to construct timing of a display frame. Either 18bit or 16bit RGB data is sent to the LCD per clock. Max frame rate is 60 fps. The configuration for the LCD interface is summarized below:


I 18-bit RGB interface – RGB666 format

I 16-bit RGB interface – RGB565 format

Note: If the LCD panel is 16-bit RGB 565 format, LCD_R0 and LCD_B0 are open drain.

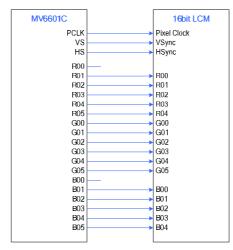


Figure 22 LCD display interface (16-bit RGB565)

Data Transfer Timing

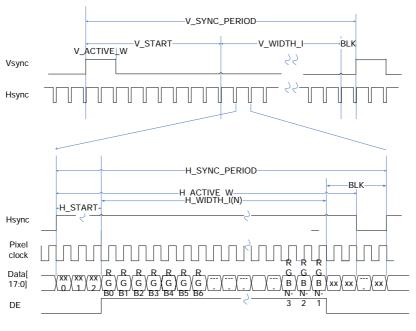


Figure 23 LCD (18bit/16bit) transfer mode – (VSync + HSync)

Note: When in LCD data transfer mode, polarity for vertical synchronization (VSync) and horizontal synchronization (HSync) are programmable as either active high or active low. Pulse width for the VSync and the pulse width for the HSync are both programmable. Both horizontal blanking time and vertical blanking time are also programmable. And finally, the number of dummy pixels at the beginning of each line and the number of dummy lines at the beginning of each frame are programmable.

4.7. Audio Interface

The Audio Interface controller block is designed to output audio data to an internal or external audio DAC, base on I2S protocol. And it also has a digital audio data input port that can receive audio data from external device and put into memory via DMA, or directly bypass all I2S signals to output port.

The built-in stereo audio DAC can output audio in analog (Line out), and headphone output through built-in headphone amplifier, so it can directly driver stereo headphone.

4.8.1 I²S Audio Interface

The following diagram shows the connection between the MV6601C and an external audio DAC in the playback mode application (video clip playback, audio playback). The MV6601C provides the master I2S clock and the I2S DAC that are controlled via the I2C or SPI interface in master mode.

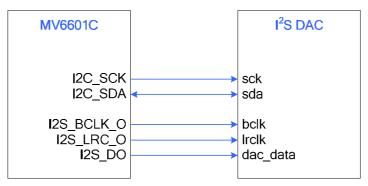


Figure 24 Connection between MV6601C and an external DAC

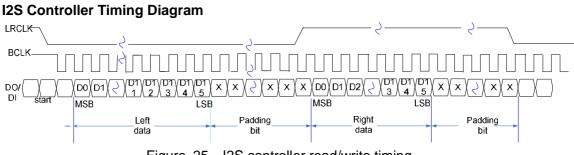
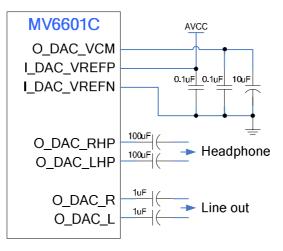


Figure 25 I2S controller read/write timing

4.8.2 Internal Audio DAC

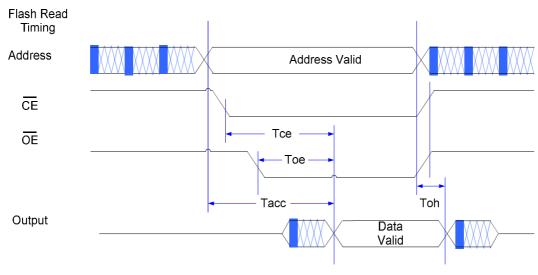

MV6601C integrates a low-cost stereo audio DAC with single-ended analog voltage input and output. The DAC employ anti-pop and de-emphasis filter. It provides power down mode, which works on the DAC simultaneously; customer can control the headphone power and DAC power separately. It also supports digital loop back.

MVD-6601-04-DS-EN	Mavrix Confidential	Page 24 of 48
	http://www.mavrixtech.com	

The following list is the features of the internal audio DAC:

- I Supports 16/18/20/24-bit input format
- I Analog supply range: 2.7 V ~ 3.6 V
- I 90 dB SNR sigma-delta DAC @ 48 kHz A-weighted
- I Supports 8 kHz 192 kHz sampling rate
- I 90 dB DR sigma-delta DAC @ 48 kHz A-weighted
- I Digital interpolation filter
- I Stereo line outputs
- I De-emphasis filter supports 44.1 kHz, 32 kHz and 48 kHz

4.8. Memory Interface


The MV6601C SoC contains two external memory controllers, one for SDRAM and one for static device (NOR Flash).

4.9.1 NOR Flash Controller

The MV6601C supports flash and boot memory controller type. The flash interface has 23 address pins, so it can support 8M single chip flash. The data width bus is 8bit.

For reading data from the flash, when CE and OE are low and WE is high, data stored at the memory location determined by the address pin is asserted on the outputs. The outputs are put in the high impedance state whenever CE or OE is high. This dual-line control gives designers flexibility to extend the flash capacity.

When using flash address pin number less than 23, example a flash only has 19 pins. Then we must connect flash to MV6601C address pin A0-A18.

Read Timing Diagram

Figure 26 Flash read timing

Program Timing Diagram

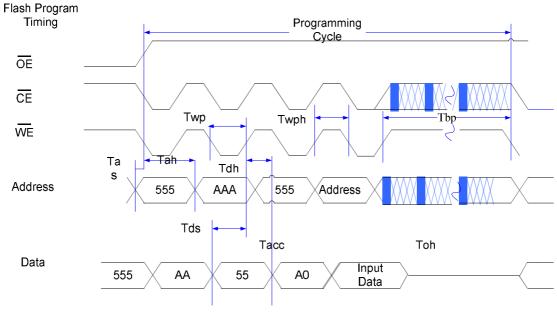


Figure 27 Flash program timing

4.9. GPIO

4.10.1 General Purpose Input/Output Interface

Most pins on the MV6601C board can act as GPIO. There are 105 GPIO pins. Each GPIO_ENB bit is reset to 1'b1, except for those GPIO pins that are shared with the host interfaces, JTAG, EJAG, and FLASH, which are powered on to functional mode. All other GPIO-able pins power on to GPIO functional mode.

5. Signal Description

5.1 Pins Description

No.	Pin Name	Dir.	Description	Default	Memo			
	System (6 pins)							
1	I_RST_N	l(*1)	External reset	(*2)	(*3)			
2	I_TEST	I	0: Normal chip operation.	-				
3	B_OSC_IO	OSC	Crystal output or external clock input	-				
4	I_OSC_I	OSC	Crystal input	-				
5	I_OSC_Z	I	0: Use internal oscillator with crystal	IN				
			1: Use external clock input					
6	I_OSC_F	I	0: Crystal frequency is 12~24MHz	IN				
			1: Crystal frequency is 24~48MHz					
			Host Interface (20 pins)					
1	B_I2C_S_SCL	В	I2C clock pin	FUNC				
2	B_I2C_S_SDA	В	I2C data pin	FUNC				
3	B_SPI_S_CE_N	В	SPI chip enable pin	FUNC				
4	B_SPI_S_SCLK	В	SPI clock pin	FUNC				
5	B_SPI_S_MISO	В	SPI master in slave out	FUNC				
6	B_SPI_S_MOSI	В	SPI master out slave in	FUNC				
7	B_TXD	В	UART transfer data out	FUNC				
8	B_RXD	В	UART receive data in	FUNC				
9	B_LCM_CS_N	В	LCM chip select	FUNC				
10	B_LCM_WR_N	В	LCM write clock	FUNC				
11	B_LCM_RD_N	В	LCM read clock	FUNC				
12	B_LCM_A0	В	LCM address select	FUNC				
13	B_LCM_D0	В	LCM data 0	FUNC				
14	B_LCM_D1	В	LCM data 1	FUNC				
15	B_LCM_D2	В	LCM data 2	FUNC				
16	B_LCM_D3	В	LCM data 3	FUNC				
17	B_LCM_D4	В	LCM data 4	FUNC				
18	B_LCM_D5	В	LCM data 5	FUNC				
19	B_LCM_D6	В	LCM data 6	FUNC				
20	B_LCM_D7	В	LCM data 7	FUNC				
		L	CD Controller Interface (23 pins)					
			RGB mode YUV mode					

MVD-6601-04-DS-EN

Mavrix Confidential http://www.mavrixtech.com

		_			
1	B_LCD_DE	В	LCD data enable	YUV data enable	IN
			pin	pin	
2	I_LCD_MCLK	I	LCD main clock	YUV main clock	IN
			input	input	
3	O_LCD_PCLK	0	LCD pixel clock	YUV pixel clock	IN
4	O_LCD_HS	0	LCD Hsync clock	YUV Hsync clock	IN
5	O_LCD_VS	0	LCD Vsync clock	YUV Vsync clock	IN
6	O_LCD_D0	0	RED data 0	YUV0	IN
7	O_LCD_D1	0	RED data 1	YUV1	IN
8	O_LCD_D2	0	RED data 2	YUV2	IN
9	O_LCD_D3	0	RED data 3	YUV3	IN
10	O_LCD_D4	0	RED data 4	YUV4	IN
11	O_LCD_D5	0	RED data 5	YUV5	IN
12	O_LCD_D6	0	GREEN data 0	YUV6	IN
13	O_LCD_D7	0	GREEN data 1	YUV7	IN
14	B_LCD_D8	В	GREEN data 2		IN
15	B_LCD_D9	В	GREEN data 3		IN
16	B_LCD_D10	В	GREEN data 4		IN
17	B_LCD_D11	В	GREEN data 5		IN
18	B_LCD_D12	В	BLUE data 0		IN
19	B_LCD_D13	В	BLUE data 1		IN
20	B_LCD_D14	В	BLUE data 2		IN
21	B_LCD_D15	В	BLUE data 3		IN
22	B_LCD_D16	В	BLUE data 4		IN
23	B_LCD_D17	В	BLUE data 5		IN
			Camera Interface	(12 pins)	
1	O_C_MCLK	0	Sensor main clock	output	IN
2	I_C_PCLK		Sensor pixel clock	input	IN
3	B_C_HS	В	Sensor Hsync pin		IN
4	B_C_VS	В	Sensor Vsync pin		IN
5	B_C_YUV0	В	Sensor YUV 0		IN
6	B_C_YUV1	В	Sensor YUV 1		IN
7	B_C_YUV2	В	Sensor YUV 2		IN
8	B_C_YUV3	В	Sensor YUV 3		IN
9	B_C_YUV4	В	Sensor YUV 4		IN
10	B_C_YUV5	В	Sensor YUV 5		IN
11	B_C_YUV6	В	Sensor YUV 6		IN
12	B_C_YUV7	В	Sensor YUV 7		IN
			Audio Interface	(14 pins)	

1	B_I2S_I_CLK	В	I2S input main clock	IN
2	B_I2S_I_LRCK	В	I2S input LeftRight clock	IN
3	B_I2S_I_DATA	В	I2S input data signal	IN
4	B_I2S_O_MCLK	В	I2S output clock	IN
5	B_I2S_O_CLK	В	I2S output main clock	IN
6	B_I2S_O_LRCK	В	I2S output LeftRight clock	IN
7	B_I2S_O_DATA	В	I2S output data signal	IN
8	O_DAC_VCM	0	DAC common mode voltage	-
9	I_DAC_VREFP	I	DAC positive reference voltage	-
10	I_DAC_VREFN	I	DAC negative reference voltage	-
11	O_DAC_LHP	AO	Left headphone sound output	-
12	O_DAC_RHP	AO	Right headphone sound output	-
13	O_DAC_R	AO	Stereo sound right output	-
14	O_DAC_L	AO	Stereo sound left output	-
			ADC Interface (11 pins)	
1	B_CLK_RST	В	Clock module reset control pin	IN
2	B_CLK_PWDN	В	Clock module power down control pin	IN
3	O_CLK_OUT	В	Clock module output	OUT
4	O_ADC_VCM	AO	ADC common mode voltage	-
5	O_ADC_VREF	AO	ADC reference voltage	-
6	O_ADC_VRP	AO	ADC positive reference voltage	-
7	O_ADC_VRN	AO	ADC negative reference voltage	-
8	I_ADC_QP	AI	Q channel + input	-
9	I_ADC_DN	AI	Q channel – input	-
10	I_ADC_IP	AI	I channel + input	-
11	I_ADC_IN	AI	I channel – input	-
			Peripheral Interface (12 pins)	
1	B_PWM0	В	Pulse width modulator output 0	IN
2	B_PWM1	В	Pulse width modulator output 1	IN
3	B_PWM2	В	Pulse width modulator output 2	IN
4	B_PWM3	В	Pulse width modulator output 3	IN
5	B_I2C_M_SCL	В	(Master) I2C clock pin	IN
6	B_I2C_M_SDA	В	(Master) I2C data pin	IN
7	B_SPI_M_CE_N	В	(Master) SPI chip enable	IN
8	B_SPI_M_SCLK	В	(Master) SPI clock	IN
9	B_SPI_M_MISO	В	(Master) SPI master in slave out	IN
10	B_SPI_M_MOSI	В	(Master) SPI master out slave in	IN
11	B_GPIO_0	В	GPIO 0	IN
12	B_GPIO_1	В	GPIO 1	IN
		•		· · · · ·

	NOR Flash Controller (35 pins)						
1	B NOR RST N	В	NOR Flash reset pin	, , , , , , , , , , , , , , , , , , , ,	FUNC		
2	B_NOR_CE_N	В	NOR Flash chip enable pi	n	FUNC		
3	B NOR WE N	B	NOR Flash write enable p		FUNC		
4	B_NOR_OE_N	В	NOR Flash out put enable		FUNC		
5	B NOR D0	B	NOR Flash data 0	F	FUNC		
6	B_NOR_D1	B	NOR Flash data 1		FUNC		
7	B_NOR_D2	B	NOR Flash data 2		FUNC		
8	B_NOR_D3	B	NOR Flash data 3		FUNC		
9	B_NOR_D4	В	NOR Flash data 4		FUNC		
10	B_NOR_D5	B	NOR Flash data 5		FUNC		
11	B_NOR_D6	B	NOR Flash data 6		FUNC		
12	B_NOR_D7	В	NOR Flash data 7		FUNC		
13	B_NOR_A0	В	NOR Flash address 0		FUNC		
14	B_NOR_A1	В	NOR Flash address 1		FUNC		
15	B_NOR_A2	В	NOR Flash address 2		FUNC		
16	B_NOR_A3	В	NOR Flash address 3		FUNC		
17	 B_NOR_A4	В	NOR Flash address 4		FUNC		
18	 B_NOR_A5	В	NOR Flash address 5		FUNC		
19	 B_NOR_A6	В	NOR Flash address 6		FUNC		
20	 B_NOR_A7	В	NOR Flash address 7		FUNC		
21	B_NOR_A8	В	NOR Flash address 8		FUNC		
22	B_NOR_A9	В	NOR Flash address 9		FUNC		
23	B_NOR_A10	В	NOR Flash address 10		FUNC		
24	B_NOR_A11	В	NOR Flash address 11		FUNC		
25	B_NOR_A12	В	NOR Flash address 12		FUNC		
26	B_NOR_A13	В	NOR Flash address 13		FUNC		
27	B_NOR_A14	В	NOR Flash address 14		FUNC		
28	B_NOR_A15	В	NOR Flash address 15		FUNC		
29	B_NOR_A16	В	NOR Flash address 16		FUNC		
30	B_NOR_A17	В	NOR Flash address 17		FUNC		
31	B_NOR_A18	В	NOR Flash address 18		FUNC		
32	B_NOR_A19	В	NOR Flash address 19		FUNC		
33	B_NOR_A20	В	NOR Flash address 20		FUNC		
34	B_NOR_A21	В	NOR Flash address 21		FUNC		
35	35 B_NOR_A22 B NOR Flash address 22			FUNC			
	Test Interface (21 pins)						
			JTAG	GPIO			
1	B_TCK	В	JTAG test clock		FUNC		

MVD-6601-04-DS-EN

				I
2	B_TDI	В	JTAG test data in	FUNC
3	B_TDO	В	JTAG test data out	FUNC
4	B_TMS	В	JTAG test mode select	FUNC
5	B_EJ_TCK	В	EJTAG test clock	FUNC
6	B_EJ_TDI	В	EJTAG test data in	FUNC
7	B_EJ_TDO	В	EJTAG test data out	FUNC
8	B_EJ_TMS	В	EJTAG test mode select	FUNC
9	B_EJ_TRST_N	В	EJTAG test reset	FUNC
			Power / Ground (43 pins)	
1	VCCK	PG	Voltage supply of core	-
2	VCCK	PG	Voltage supply of core	-
3	VCCK	PG	Voltage supply of core	-
4	VCCK	PG	Voltage supply of core	-
5	VCCK	PG	Voltage supply of core	-
6	VCCK	PG	Voltage supply of core	-
7	VCCK	PG	Voltage supply of core	-
8	VCCK	PG	Voltage supply of core	-
9	VCCK	PG	Voltage supply of core	-
10	VCCK	PG	Voltage supply of core	-
11	VCCK	PG	Voltage supply of core	-
12	GNDK	PG	Ground of core	-
13	GNDK	PG	Ground of core	-
14	GNDK	PG	Ground of core	-
15	GNDK	PG	Ground of core	-
16	GNDK	PG	Ground of core	-
17	GNDK	PG	Ground of core	-
18	GNDK	PG	Ground of core	-
19	GNDK	PG	Ground of core	-
20	GNDK	PG	Ground of core	-
21	GNDK	PG	Ground of core	-
22	GNDK	PG	Ground of core	-
23	VCCIO_BB	PG	Voltage supply of host interface	-
24	VCCIO_BB	PG	Voltage supply of host interface	-
25	VCCIO_BB	PG	Voltage supply of host interface	-
26	VCCIO_SPI	PG	Voltage supply of SPI interface	-
27	VCCIO_C	PG	Voltage supply of camera interface	-
28	VCCIO_CLK	PG	Voltage supply of clock controller	-
29	VCCIO_PWM	PG	Voltage supply of PWM	-
30	VCCIO_NOR	PG	Voltage supply of NOR Flash controller	-

MVD-6601-04-DS-EN

31	VCCIO_NOR	PG	Voltage supply of NOR Flash controller	-
32	GNDIO	PG	Ground of IO	-
33	GNDIO	PG	Ground of IO	-
34	GNDIO	PG	Ground of IO	-
35	GNDIO	PG	Ground of IO	-
36	GNDIO	PG	Ground of IO	-
37	GNDIO	PG	Ground of IO	-
38	GNDIO	PG	Ground of IO	-
39	GNDIO	PG	Ground of IO	-
40	GNDIO	PG	Ground of IO	-
41	VCC3IO	PG	Voltage supply of I/O	-
42	GND3IO	PG	Ground of IO	-
43	VCCIO_LCD	PG	Voltage supply of LCD controller	-
44	VCCIO_LCD	PG	Voltage supply of LCD controller	-
45	GNDIO_LCD	PG	Ground of LCD controller	-
46	GNDIO_LCD	PG	Ground of LCD controller	-
47	VCCIO_SD	PG	Voltage supply of SDRAM controller	-
48	VCCIO_SD	PG	Voltage supply of SDRAM controller	-
49	VCCIO_SD	PG	Voltage supply of SDRAM controller	-
50	VCCIO_SD	PG	Voltage supply of SDRAM controller	-
51	VCCIO_SD	PG	Voltage supply of SDRAM controller	-
52	GNDIO_SD	PG	Ground of SDRAM controller	-
53	GNDIO_SD	PG	Ground of SDRAM controller	-
54	GNDIO_SD	PG	Ground of SDRAM controller	-
55	GNDIO_SD	PG	Ground of SDRAM controller	-
56	GNDIO_SD	PG	Ground of SDRAM controller	-
57	VCC12A_PLL	PG	Voltage supply of PLL	-
58	GNDA_PLL	PG	Ground of PLL	-
59	VCC12A_SDPLL	PG	Voltage supply of SDRAM PLL	-
60	GNDA_SDPLL	PG	Ground of SDRAM PLL	-
61	VCC12A_ADC	PG	Voltage supply of internal ADC	-
62	GNDA_ADC	PG	Ground of internal ADC	-
63	VCC3A_DAC	PG	Voltage supply of internal DAC	-
64	GNDA_DAC	PG	Ground of internal DAC	-
65	VCC3A_DACHP	PG	Voltage supply of Headphone DAC	-
66	GNDA_DACHP	PG	Ground of Headphone DAC	-

Note: (*1) "I" Only input pin; "O" Only output pin; "B" bidirectional pin; "A" Analog pin; "PG" Power or Ground pin.

(*2) "FUNC" means power on to functional mode; "IN" means power on to input GPIO mode;

(*3) <mark>TBD</mark>

5.2 IO-Trap Setting

MV6601C can be set to different configurations when powered on. The configuration setting is configure by connect pull-up or pull-down resistors to some pins.

Pin	Name	Description	Note
B_NOR_D[0:1]	Xtal[0:1]	Crystal frequency selection	IO_Trap[0:1]
		Xtal[2], Xtal[1], Xtal[0]	
		3'b000: 24.576 MHz	
		3'b001: 19.2 MHz	
		3'b010: 16.384 MHz	
		3'b011: 13 MHz	
		3'b100: 48 MHz	
		3'b101: 36 MHz	
		3'b110: 30 MHz	
		3'b111: 26 MHz	
B_NOR_D[2:3]	SpiMode[0:1]	SPI Mode setting,	IO_Trap[2:3]
		SpiMode[1], SpiMode[0]	
		2'b00: Mode 0	
		2'b01: Mode 1	
		2'b10: Mode 2	
		2'b11: Mode 3	
B_NOR_D4	BootSource	1'b0: Boot from extern NOR Flash	IO_Trap[4]
		1'b1: Boot from SDRAM	
B_NOR_D5	I2CAddress	HIF I2C device address setting	IO_Trap[5]
		1'b0: 0x56	
		1'b1: 0x65	
B_NOR_D6	Xtal[2]	The another crystal selection pin	IO_Trap[6]
B_NOR_D7	PIIBypass	1'b0: Bypass PLL use oscillator clock as	IO_Trap[7]
		PLL output clock	
		1'b1: No Bypass	
I_OSC_Z	OscType	1'b0: Use internal oscillator with Crystal	OSC_Trap[0]
		1'b1: Use external oscillator clock input	
I_OSC_F	OscFreq	Frequency selection if use internal	OSC_Trap[1]
		oscillator with Crystal,	
		1'b0: 12 ~ 24MHz	
		1'b1: 24 ~ 42MHz	

5.3 Boot-up Sequence

The MV6601C supports two types of boot source.

- I Host-Boot: The host processor initiated and downloading code from host, then booting from SDRAM.
- I Flash-Boot: It will auto boot from Flash.

Both boot-up sequences need some pre-strap setup, such as select crystal or oscillator as clock input, PLL configuration, Host interface configuration, and configure MV6601C RISC processor as auto run mode or no-auto run mode. Refer to IO-Trap Setting for detail.

5.3.1 Host-Boot Sequence

The IO-Trap option should be configured as no-auto run mode.

After MV6601C power on and reset have been done. The Host should program the necessary clock register, and initiate the setting of SDRAM. Then SDRAM is ready for access, host can download the firmware into SDRAM via the burst access mode through the host interface (I2C, SPI, LCM, etc.). It is the software's responsibility to ensure the program data integrity after the download (Looking for HW checksum logic or at least word count logic). Once the download is verified, the host processor should soft reset MV6601C RISC to run the firmware, then check response from MV6601C to ensure firmware running correctly. Now MV6601C is ready for work.

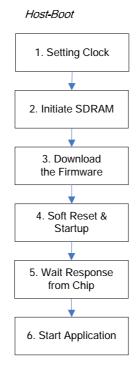


Figure 28 Host-boot sequence

Mavrix Confidential http://www.mavrixtech.com

5.3.2 Flash-Boot Sequence

The IO-Trap option should be configured as auto run mode.

After power-on-reset been done, the MV6601C will auto run from flash in default. Then the host processor must check response from MV6601C to ensure firmware running correctly,. Now MV6601C is ready for work.

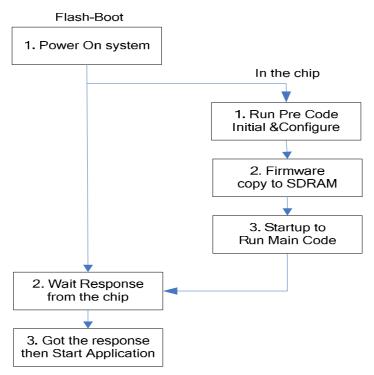


Figure 29 Flash-boot sequence

6. Electrical Characteristic

6.1 Absolute Maximum Rating

Parameter	Symbol	Value	Unit
Voltage on any pin relative to VSS	VT	<mark>-0.5 to 4.6</mark>	V
Supply Voltage relative to VSS	VDD	<mark>-0.5 to 4.6</mark>	V
Operating Temperature	TOPT	<mark>-10 to +70</mark>	°C
Storage Temperature	TSTG	<mark>-55 to +125</mark>	°C

6.2 Operating Condition

	Min.	Тур.	Max.	Unit
Internal	<mark>1.1</mark>	<mark>1.2</mark>	<mark>1.3</mark>	V
PLL	<mark>1.1</mark>	1.2	<mark>1.3</mark>	V
SDRAM	<mark>2.3</mark>	<mark>2.5</mark>	<mark>2.7</mark>	V
Host Interface	<mark>1.8</mark>	<mark>3.0</mark>	<mark>3.3</mark>	V
GPIO	<mark>1.8</mark>	<mark>3.0</mark>	<mark>3.3</mark>	V
Analog (Interval DAC)	<mark>2.7</mark>	<mark>3.0</mark>	<mark>3.6</mark>	V
Internal core	-	<mark>96</mark>)	<mark>160</mark>	MHz
Integrated RISC core	-	<u>96</u>	<mark>250</mark>	MHz

MV6601C Data Sheet(V0.7)

6.3 DC Characteristic

TA=25℃

Symbol	Parameter	Min.	Тур.	Max.	Unit
VCCK	Core operating voltage	<mark>1.1</mark>	<mark>1.2</mark>	<mark>1.3</mark>	V
VCC3IO					
VCCIO_BB					
VCCIO_SPI					
VCCIO_CLK	I/O operation voltage	<mark>1.8</mark>	<mark>3.0</mark>	<mark>3.3</mark>	V
VCCIO_C	NO operation voltage	1.0	3.0	0.0	v
VCCIO_PWM					
VCCIO_NOR					
VCCIO_LCD					
VCCIO_SD	SDRAM controller operation voltage	<mark>2.3</mark>	<mark>2.5</mark>	<mark>2.7</mark>	V
VCC12A_PLL	PLL operation voltage	<mark>1.1</mark>	<mark>1.2</mark>	<mark>1.3</mark>	V
VCC12A_SDPLL				1.0	v
VCC12A_ADC	Internal ADC operation voltage	<mark>1.1</mark>	<mark>1.2</mark>	<mark>1.3</mark>	V
VCC3A_DAC	Internal DAC operation voltage	<mark>2.7</mark>	<mark>3.0</mark>	<mark>3.6</mark>	V
VCC3A_DACHP		<u> </u>	0.0		v
IDD	II/O (Standby)	-	TBD	TBD	mA
	ICore (Standby)	-	TBD	TBD	mA
IDD	II/O (Bypass)	-	TBD	TBD	mA
	ICore (Bypass)	-	TBD	TBD	mA
IDD	II/O (Idle)	-	TBD	TBD	mA
טטו	ICore (Idle)	-	TBD	TBD	mA
IDD	II/O (Play AVI)	-	TBD	TBD	mA
טטו	ICore (Play AVI)	-	TBD	TBD	mA
IDD	II/O (Play RMVB)	-	TBD	TBD	mA
עטו	ICore (Play RMVB)	-	TBD	TBD	mA

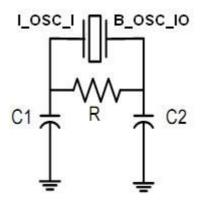
Note: 1. The current is average value, and connect to 16.384MHz Crystal as clock input.

2. The operation power: II/O: The IO current; ICore: The Core logic current

3. The maximum condition is measure by 1.2V core power, 3.0V IO power, 3.3V DAC power, and 25 $^\circ\!\!C$ temperature.

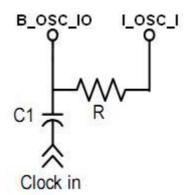
5. Standby mode: The clock inputs of all modules are stopped and all voltage supply of most modules is power on.

6. Bypass mode: Base on standby mode, enable all bypass functions.


7. Idle mode: CPU works in low frequency and other modules do nothing.

8. Play mode: Display output QVGA (320*240) size.

6.4 Crystal Input Timing


6.4.1 Crystal Oscillation

Parameter	Min.	Тур.	Max.	Unit
Resistor (R)	-	NC	-	MΩ
Capacitor (C1)	-	12	-	pF
Capacitor (C2)	-	12	-	pF

Note: Typical value is suitable for 16.384MHz crystal input.

6.4.2 External Clock

Parameter	Min.	Тур.	Max.	Unit
Resistor (R)	-	NC	-	MΩ
Capacitor (C1)	-	1000	-	pF
Frequency (clock in)	12	16.384	48	MHz
Clock in amplitude (peak to peak)	-	1.8	3.3	V

6.5 AC Characteristic

- 6.5.1 HIF Timing
- I I2C Slave Interface Timing

<TBD>

II SPI Slave Interface Timing

<mark><TBD></mark>

III UART Interface Timing

<mark><TBD></mark>

IV LCM Interface Timing

<mark><TBD></mark>

6.5.2 LCD Controller Timing

<TBD>

6.5.3 Camera Emulation Timing

<mark><TBD></mark>

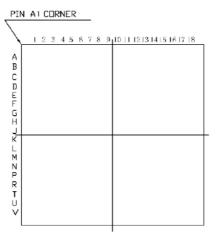
6.5.4 I2S Interface Timing

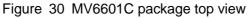
<TBD>

6.5.5 NOR Flash Controller Timing

<mark><TBD></mark>

6.6 I/O Pad Characteristic


Most pins on the MV6601C board can act as GPIO. There are 105 GPIO pins. All GPIO-able pins power on to GPIO functional mode, except those GPIO pins that are shared with the host interfaces, JTAG, EJAG, and FLASH, which are powered on to functional mode,


Symbol	Parameter	Min.	Тур.	Max.	Unit
VIL	Input low voltage	-0.3	-	0.3 VCCIO	V
VIH	Input high voltage	0.7 VCCIO	-	VCCIO+10%	V
IOL	Output low current	-	8	20	mA
IOH	Output high current	-	8	20	mA
IIL	Input leakage current	-	-	1	μA
Rd-	Pull down resistor	10K	-	150K	Ohm
Rd+	Pull up resistor	10K	-	150K	Ohm

7. Physical Information

7.1 Package Dimension

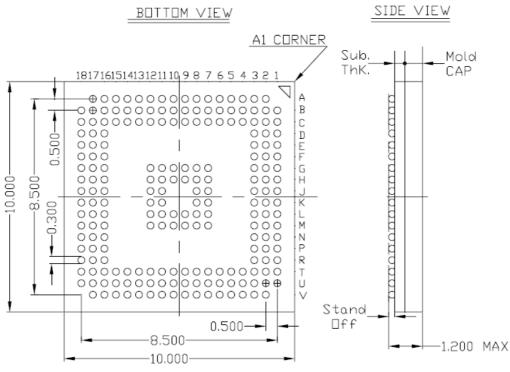


Figure 31 MV6601C package bottom and side view

MV6601C Data Sheet(V0.7)

7.2 Pin Map

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
A		GPIO96		GPIO14	GPI012	GPI016	GPIO18	GPIO20	GPI022			GPIO79		GPIO48	GPIO50	GPI052	GPIO54		Α
		B_CLK_RST	I_OSC_F	B_LCM_WR_N		B_LCM_D1	B_LCM_D3	B_LCM_D5	B_LCM_D7	I_OSC_I	B_OSC_IO	B_NOR_CE_N		B_NOR_A1	B_NOR_A3	B_NOR_A5	B_NOR_A7		
B		GPI097		GPI011	GPI013	GPI015	GPI017	GPI019	GPIO21		GPIO80	GPI078	GPIO47	GPIO49	GPI051	GPI053	GPI056	GPI055	в
	I_ADC_QP	B_CLK_PWDN	I_OSC_Z	B_LCM_CS_N	B_LCM_RD_N	B_LCM_D0	B_LCM_D2	B_LCM_D4	B_LCM_D6	GND3IO	B_NOR_OE_N	B_NOR_WE_N	B_NOR_A0	B_NOR_A2	B_NOR_A4	B_NOR_A6	B_NOR_A9	B_NOR_A8	
C		GPIO81															GPI058	GPI057	С
	I_ADC_QN	B_I2C_M_SCL GPI082	VCCIO_CLK	GNDIO	VCCIO_BB	GNDIO	VCCIO_BB	GNDIO_SD	VCCIO_SD	VCC3IO	VCCK	VCC12A_PLL	GNDK	GNDA_PLL	GNDIO	VCCIO_NOR	B_NOR_A11 GPIO60	B_NOR_A10 GPI059	
D			01010																D
E	I_ADC_IN	B_I2C_M_SDA	GNDIO GPIO9													GNDIO	B_NOR_A13 GPIO62	B_NOR_A12 GPI061	Е
	I ADC IP	O ADC VREF														VCCIO NOR	B NOR A15	B NOR A14	-
╞┲╴	I_ADC_IP	U_ADC_VREP	GPIO10													GPIO70	GPIO64	GPI063	F
Ľ.	O ADC VRN	O ADC VCM	B RXD													B NOR DO	B NOR A17	B NOR A16	•
G		GPIO90														GPI071	GPIO66	GPI065	G
Ŭ	O_ADC_VRP	B_SPI_S_CE_M	O_CLK_OUT				VCC12A_ADC	GNDA_ADC	vсск	vсск	VCCIO_SD	VCCIO_SD				B_NOR_D1	B_NOR_A19	B_NOR_A18	Ŭ
н	GPIO94	GPIO91														GPI072	GPIO68	GPIO67	Н
	B_I2C_S_SCL	B_SPI_S_SCLE	VCCIO_BB				VCCK	GNDK	GNDK	GNDK	GNDIO_SD	GNDIO_SD				B_NOR_D2	B_NOR_A21	B_NOR_A20	
J	GPIO95	GPI092														GPI073	GPIO46	GPIO69	J
	B_I2C_S_SDA	B_SPI_S_MISC	GNDIO				VCCK	GNDK			GNDK	VCCK				B_NOR_D3	B_LCD_DE	B_NOR_A22	
K	GPIO0	GPI093														GPI074			K
	GPIO0	B_SPI_S_MOSI	I_RST_N				VCCK	GNDK			GNDK	VCCK				B_NOR_D4	I_LCD_MCLK	O_LCD_PCLK	
L.	GPI01	GPI0102														GPI075			
	GPI01	B_GPIO_0	I_TEST				GNDIO_SD	GNDIO_SD	GNDK	GNDK	GNDK	VCCK				B_NOR_D5	O_LCD_VS	O_LCD_HS	
м	GPIO2	GPIO103	GPIO98													GPI076			м
	GPI02 GPI03	B_GPIO_1 GPIO104	B_PWM0				VCCIO_SD	VCCIO_SD	VCCK	VCCK	VCC12A_SDPL	GNDA_SDPLL				B_NOR_D6 GPI077	O_LCD_D1	O_LCD_D0	
Ν																			Ν
	GPIO3 GPIO83	B_I2S_MCLK	VCCIO_PWM													B_NOR_D7	O_LCD_D3	O_LCD_D2	Р
	B_SPI_M_CE_N															GNDIO LCD	O LCD D5	O LCD D4	「
R	GPIO84	TCCIO_SFT	GPIO99													GNDIO_LCD	0_200_03	0_LCD_D4	R
L	B_SPI_M_SCLF	GNDIO	B_PWM1													VCCIO_LCD	O_LCD_D7	O_LCD_D6	
T		GPI0100	GPIO101			GPI04	GPI05	GPI06	GPI07	GPI08						10010_200	GPIO27	GPIO26	Т
ι.	B_SPI_M_MISO	B_PWM2	B_PWM3	VCCIO_C		GPIO4	GP 105	GPIO6	GP107	GPI08	VCC3A_DACH	GNDA_DACHP	VCC3A_DAC	GNDA_DAC	GNDIO_LCD	VCCIO_LCD	B_LCD_D9	B_LCD_D8	1.1
U	GPIO86		GPIO36	GPIO38	GPIO40	GPIO42	GPIO44	GPIO87	GPIO89	GPIO24				GPIO35	GPIO33	GPIO31	GPIO29	GPIO28	U
<u>ًا</u>	B_SPI_M_MOSI	O_C_MCLK		B_C_YUV0		B_C_YUV4		B_I2S_I_CLK		B_I2S_O_LRCK	I_DAC_VREFN	O_DAC_VCM	I_DAC_VREFP	B_LCD_D17	B_LCD_D15	B_LCD_D13	B_LCD_D11	B_LCD_D10	
			GPIO37	GPIO39	GPIO41	GPIO43	GPIO45	GPIO88	GPIO23	GPIO25					GPIO34	GPIO32	GPIO30		V
		I_C_PCLK		B_C_YUV1							O_DAC_LHP	O_DAC_RHP	O_DAC_R	O_DAC_L	B_LCD_D16	B_LCD_D14	B_LCD_D12		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
		-		1 7	5	3								7	10	1 10			

7.3 Ordering Information

Product Number	Package Type	Memo
MV6601C	TFBGA 208 balls 10*10*1.2	0.13um CMOS

7.4 Storage Condition and Period for Package

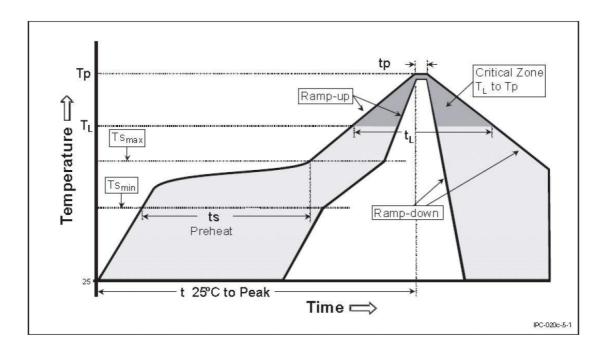
Package	Moisture Sensitivity Level	Max. Reflow Temperature	Floor Life Storage Condition			
BGA	LEVEL 3	220 +5/-0 ℃	168Hrs@ ≤30℃/60% R.H.	Yes		

Note: Please refer to IP/JEDEC standard J-STD-020C or refer to the "CAUTION Note" on dry pack bag.

7.5 Recommended SMT Temperature Profile

This "Recommended" temperature profile is a rough guideline for SMT process reference. The Mavrix MV600 follows the JEDEC standard for reflow profile J-STD-020C July 2004.

MV6601C Data Sheet(V0.7)


Process	Volume mm ³ <350	Volume mm ³ 350 - 2000	Volume mm ³ >2000
SnPb Eutectic	240 +0/-5 ℃	225 +0/-5 ℃	225 +0/-5 ℃
Pb-Free Process	260 +0 ℃	260 +0 ℃	260 +0 ℃

IPC/JEDEC J-STD-020C

July 2004

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average Ramp-Up Rate (Ts _{max} to Tp)	3 °C/second max.	3° C/second max.
Preheat – Temperature Min (Ts _{min}) – Temperature Max (Ts _{max}) – Time (ts _{min} to ts _{max})	100 °C 150 °C 60-120 seconds	150 °C 200 °C 60-180 seconds
Time maintained above: – Temperature (T _L) – Time (t _L)	183 °C 60-150 seconds	217 °C 60-150 seconds
Peak/Classification Temperature (Tp)	See Table 4.1	See Table 4.2
Time within 5 °C of actual Peak Temperature (tp)	10-30 seconds	20-40 seconds
Ramp-Down Rate	6 °C/second max.	6 °C/second max.
Time 25 °C to Peak Temperature	6 minutes max.	8 minutes max.

Note 1: All temperatures refer to topside of the package, measured on the package body surface.

Appendix

Group Connection Diagram

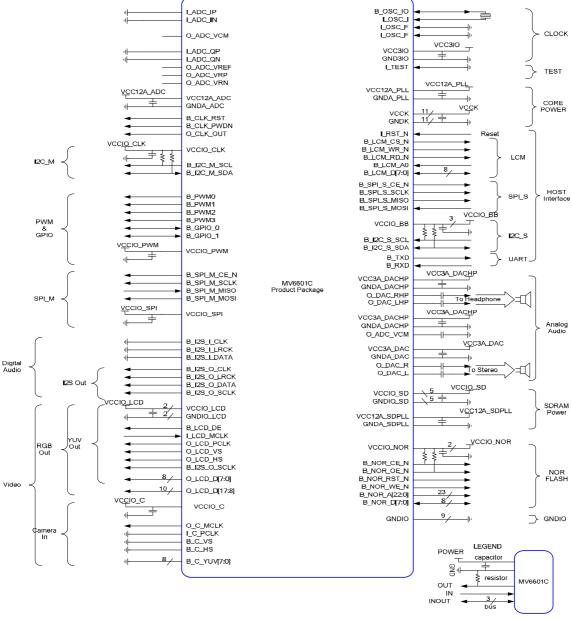


Figure 32 MV6601C group connection diagram

Acronym and Abbreviation

Acronym and	Full Name
Abbreviation	
IO	Input/Output
В	Bi-Directional
S	Slave
М	Master
SCLK	Signal Clock
MCLK	Master Clock
PCLK	Pixel Clock
TXD	Transfer Data
RXD	Receive Data
LRC	Left-Right Clock
HS, VS	Horizontal Synchronization, Vertical Synchronization
MISO	Master In Slave Out
MOSI	Master Out Slave In
CE, CS	Chip Enable, Chip Select
DAC	Digital-to-analog converters

Contact Information

Mavrix Technology, Inc.

4340 Von Karman Ave #320

Newport Beach, CA 92660

(Office) +1(949) 756-8898

(Fax) +1(949) 756-8999

E-mail info@mavrixtech.com

Website <u>www.mavrixtech.com</u>

上海摩威电子科技有限公司

地址:中国上海市张江高科园区张衡路 200 号三号楼 3501-3503 室 邮政编码: 201204 电话 +86 (21) 5109-5958 传真 +86 (21) 5027-7658 E-mail <u>info@mavrixtech.com.cn</u> Website www.mavrixtech.com